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 During early adulthood, a phase in which the central nervous
 system displays considerable plasticity and in which important
 cognitive traits are shaped, the effects of exercise on cognition
 remain poorly understood. We performed a cohort study of all
 Swedish men born in 1950 through 1976 who were enlisted for
 military service at age 18 (N = 1,221,727). Of these, 268,496 were
 full-sibling pairs, 3,147 twin pairs, and 1,432 monozygotic twin
 pairs. Physical fitness and intelligence performance data were
 collected during conscription examinations and linked with other
 national databases for information on school achievement, socio-
 economic status, and sibship. Relationships between cardiovascu-
 lar fitness and intelligence at age 18 were evaluated by linear
 models in the total cohort and in subgroups of full-sibling pairs and
 twin pairs. Cardiovascular fitness, as measured by ergometer
 cycling, positively associated with intelligence after adjusting for
 relevant confounders (regression coefficient b = 0.172; 95% CI,
 0.168-0.176). Similar results were obtained within monozygotic
 twin pairs. In contrast, muscle strength was not associated with
 cognitive performance. Cross-twin cross-trait analyses showed
 that the associations were primarily explained by individual spe-
 cific, non-shared environmental influences (>80%), whereas her-
 itability explained <15% of covariation. Cardiovascular fitness
 changes between age 15 and 18 y predicted cognitive performance
 at 18 y. Cox proportional-hazards models showed that cardiovas-
 cular fitness at age 18 y predicted educational achievements later
 in life. These data substantiate that physical exercise could be an
 important instrument for public health initiatives to optimize
 educational achievements, cognitive performance, as well as dis-
 ease prevention at the society level.

 aerobic fitness | intelligence | muscular strength | twin analysis | exercise

 ability of the brain to adapt to a new situation, environ-
 ment, or consequences of an injury is often referred to as

 brain plasticity. Physical exercise, as indexed by cardiovascular
 fitness, is a factor that strongly affects brain plasticity (1). In
 rodents, physical exercise improves memory function and struc-
 tural parameters such as synapse density, neuronal complexity,
 and hippocampal neurogenesis (2-5). In the injured brain,
 exercise induces neuroprotection in animal models of stroke (6),
 traumatic brain injury (7), and Parkinson disease (8). We have
 recently shown that voluntary running significantly restores the
 neural stem cell pool, hippocampal neurogenesis, and behavioral
 deficits following a clinically relevant, moderate dose of irradi-
 ation (9). These experimental studies indicate the importance of
 physical exercise for cognitive performance.

 Positive cognitive effects of exercise have also been demon-
 strated in humans. Meta-analyses demonstrate a positive asso-
 ciation between cardiovascular (or "aerobic") fitness and cog-
 nitive performance in elderly subjects (10-14). Higher levels of
 cardiovascular fitness are associated with increased hippocampal
 volume as well as better memory function (15). Physical activity
 during midlife appears to protect against dementia and to

 improve cognitive performance in older adults with memory
 impairment (16, 17). At the other end of the age spectrum,
 physical activity and academic achievement display positive
 correlation, as indicated by meta-analysis of smaller cohort
 studies of school children (18). However, the relationship be-
 tween physical exercise and neurocognitive function in young
 adults remains unknown because of conflicting data. Acutely,
 physical exercise seems to have little effect on memory and
 cognition; executive function processes involved in working
 memory remain unaltered, although aspects of delayed long-
 term memory improve (19, 20). Long-term physical exercise
 appears to have a slight effect on reaction time in young people
 (21). Based on small sample size, an 8-week training program
 resulted in improved reaction time (n = 20) and executive
 function (n = 37) (22, 23). Cross-sectional studies demonstrated
 weak associations between cardiovascular fitness and cognitive
 performance in young adults (24, 25). However, frequent or
 strenuous physical activity in young people has been suggested
 to negatively affect cognitive achievement during adolescence
 (12, 20). In view of these conflicting data, a larger scale,
 population-wide analysis of young adults is warranted.

 The present study analyzed compulsory screening results for
 military service at 18 years of age from all Swedish men born
 from 1950 through 1976. The study aimed to determine the
 association between physical activity and cognitive performance,
 as well as the specific interactions of cardiovascular fitness and
 muscular strength on cognitive performance. In addition, the
 roles of genetic and familial influences were assessed. Moreover,
 longitudinal associations between physical training and midlife
 indicators of cognitive performance, such as educational and
 occupational status, were investigated. For study design, please
 see Fig. 1.

 Results

 Cross-Sectional Analyses. Cardiovascular fitness, not muscular strength,
 at age 18 y is associated with cognitive performance. Associations
 between cardiovascular fitness and global intelligence scores, as
 well as logical, verbal, visuospatial, and technical scores, were
 determined (see Fig. 2 A and C-F and Table 1). Increased
 cardiovascular fitness, as measured by Wmax/kg by using an
 ergometer cycle, was associated with better cognitive scores at
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 Fig. 1. Study design. The conscription register data were linked with the
 National Swedish Board of Education school records database to obtain

 grades from the final year of compulsory school (age 15 y), the Multi-
 Generation Register for data on full brothers, the Swedish Twin Register for
 information on zygosity, and Statistics Sweden National Longitudinal Inte-
 gration Database for Health Insurance and Labour Market Studies (LISA) for
 information on education and occupation.

 age 18 y. In contrast, muscular strength weakly associated with
 global intelligence, and was significant only for the lower scores
 (Fig. IB). Therefore, 2 additional linear regression analyses were
 performed for separate segments of the curve, i.e., muscular
 strength score 1 to 4 and muscular strength score 4 to 9 (see
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 Fig. 2. Mean levels of intelligence stanine scores by cardiovascular fitness or
 muscular strength at age 18 y. For each cognitive measure, all means signifi-
 cantly differed from the others, with the exception of cardiovascular fitness
 scores 6 vs. 7 and 8 vs. 9 in F. In B, the means of global intelligence score for
 muscular strength scores 4-9 were not significantly separated from each
 other. The SDs were 1 .8-2.0 (A), 1 .8-2.3 (a), and 0.8-1 .3 (C-F). The Ρ value was
 <0.0001 for all associations. For regression and correlation coefficients, see
 Table 1.

 Table 1). Similar results were observed for intelligence score
 subcategories.
 Associations between cognitive performance and cardiovascular fitness
 remained in adjusted models. In linear multiple regression models,
 in which adjustment for conscription year, conscription test
 center, father's education, and mother's education was per-
 formed, the associations remained between cardiovascular fit-
 ness and global intelligence scores (b = 0.168; 95% CI, 0.166-
 0.171; R2 = 0.163; η = 948,078), as well as logical (b = 0.176;
 CI 0.174-0.178; R2 = 0.142; F = 24,033; η = 899,474), verbal
 (b = 0.133; CI 0.131-0.135; R2 = 0.148; F = 15,632; η =
 898,667), visuospatial (b = 0.114; CI, 0.112-0.116; R2 = 0.089;
 F = 9,666; η = 898,668), and technical scores (b = 0.113; CI,
 0.111-0.115; R2 = 0.100; F = 9,809; η = 888,021).

 To determine whether cardiovascular fitness was differentially
 correlated with one domain of cognitive performance more than
 others, we repeated the adjusted models with the exact same set
 of individuals who had complete records in all domains (n =
 883,740). This analysis changed the associations very little (b and
 R2 values were identical within 0.001) and it thus appears that
 aerobic capacity was associated most strongly with logic and
 verbal intelligence.
 Associations between cardiovascular fitness and cognition within brother
 and twin pairs. To assess potential effects of familial and genetic
 factors, regression analyses were performed among brother
 pairs, as well as dizygous (DZ) and monozygous (MZ) twin pairs,
 using global intelligence, logical, verbal, visuospatial, and tech-
 nical scores as dependent variables and cardiovascular fitness as
 an independent variable (Table 2). Brothers' scores were in-
 cluded as covariates. If the association between cardiovascular

 fitness and cognition was entirely explained by genetic and
 upbringing conditions, the association would be substantially
 reduced or even disappear within MZ twin pairs. However, the
 association remained strong (as indicated by the b value), even
 within MZ twin pairs, indicating that the association was pre-
 dominantly caused by environmental factors.
 Importance of genetic influences for the measures: univariate heritability.
 The correlation coefficients for the 5 intelligence scores were
 similar for brother pairs (r = 0.32-0.48) and DZ twins (r =
 0.33-0.52), but those for cardiovascular fitness differed in full
 brother pairs (r = 0.26) and DZ twins (r = 0.39). In contrast, MZ
 twin pairs exhibited considerably greater correlation coefficients
 for cardiovascular fitness (r = 0.67) and intelligence scores (r =
 0.61-0.80). The heritability of cardiovascular fitness was 56%;
 the shared environmental component explained 11% and the
 non-shared environmental component 33% of the variance.
 Heritabilities for cognitive measures ranged between 52% and
 56%, shared environmental component between 5% and 24%,
 and non-shared environment between 20% and 39%.
 Genetic and environmental influences on the associations: bivariate

 heritability. To quantify the importance of genetic and environ-
 mental factors in associations between cardiovascular fitness and

 cognitive performance, "cross-twin cross-trait" correlations
 were compared within MZ and DZ pairs. Results yielded a
 cross-trait heritability (i.e., bivariate heritability). Consistent
 with the sibling regression analyses (Table 2), the non-shared
 environment predominantly explained the associations (^80%),
 whereas genetic factors explained <15% of the covariation
 between cardiovascular fitness and cognitive measures (Table 2).

 Longitudinal Analyses. Prediction of cognitive performance from changes
 in cardiovascular fitness. In this analysis, we tried to evaluate
 whether young male subjects whose cardiovascular fitness had
 improved between age 15 y and age 18 y had significantly higher
 intelligence scores than those whose cardiovascular fitness de-
 clined (Fig. 3A). Overall, the regression coefficient of cardio-
 vascular fitness score at age 18 y on physical education grades at
 age 15 y was 0.638 (95% CI, 0.633-0.643; R2 = 0.16). Cognitive

 I
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 Table 1. Associations between cardiovascular fitness and intelligence scores as well as muscular strength and intelligence scores at
 age 18 y

 Global Logical Verbal Visuospatial Technical
 Parameter intelligence intelligence intelligence intelligence intelligence

 Cardiovascular fitness

 η 1,214,472 1,159,011 1,158,146 1,158,148 1,146,662
 b 0.222(0.220-0.224) 0.221 (0.219-0.223) 0.189(0.187-0.190) 0.161 (0.159-0.163) 0.141 (0.139-0.143)
 r 0.20 0.20 0.18 0.15 0.13

 Muscular strength
 η 1,217,584 1,161,545 1,160,685 1,160,687 1,149,185
 b 0.056(0.054-0.057) 0.014(0.012-0.016) -0.003 (-0.005 to -0.001) 0.045(0.043-0.047) 0.129(0.128-0.131)
 r 0.054 0.01 -0.003 0.04 0.13

 b1 0.333 (0.320-0.345) 0.237 (0.225-0.250) 0.159 (0.147-0.171) 0.277 (0.265-0.289) 0.429 (0.417-0.441)
 b2 0.030(0.028-0.032) -0.006 (-0.008 to -0.004) -0.017 (-0.019 to -0.015) 0.023(0.021-0.025) 0.100(0.098-0.102)

 Values in parentheses are 95% CIs. b=regression coefficient presented with 95% confidence intervals. r=Pearson correlation coefficients. b1, linear regression
 analysis for muscular strength score 1-4; b2, muscular strength score 4-9.

 performance was then compared among high, low, and middle
 groups of cardiovascular fitness; interpreted as increased (i.e.,
 the average deviation from the regression line was +2.5; SD,
 0.4), decreased (average deviation, -2.3; SD, 0.6), and approx-
 imately unchanged (average deviation, -0.03; SD, 0.8) cardio-
 vascular fitness, respectively. Those with increased fitness be-
 tween 15 and 18 y of age exhibited significantly higher global
 intelligence scores than those with decreased fitness (Fig. 3B).
 Similar results were obtained for logical, verbal, visuospatial, and
 technical scores. These findings indicated that changes in car-
 diovascular fitness were linked to changes in cognitive perfor-
 mance during adolescence.
 Prediction of education and occupation. Table 3 lists the adjusted
 hazard ratios for cardiovascular fitness relation at age 18 y and
 subsequent education (university vs. high school) and occupa-
 tion (professions ranked with high vs. low socioeconomic index).
 We found that better cardiovascular fitness at age 18 y was

 associated with a higher educational attainment. A similar
 pattern, but of greater magnitude, was observed for occupational
 outcome.

 Discussion

 Our data demonstrate that cardiovascular fitness and cognitive
 performance at age 18 y are positively associated, even after
 adjusting for relevant confounders. Change in physical achieve-
 ment between ages 15 y and 18 y predicted cognitive perfor-
 mance at age 18 y. Moreover, cardiovascular fitness during early
 adulthood predicted socioeconomic status and educational at-
 tainment later in life. To our knowledge, this is the first study to
 demonstrate a clear positive association between cardiovascular
 fitness and cognitive performance in a large population of young
 adults. These results have implications for the influence of
 exercise on plasticity and the cardiovascular fitness hypothesis.

 In animal studies, a number of mechanisms have been shown
 to play a role in exercise-induced cognition and memory im-

 Table 2. Brother and twin pair analyses

 Analysis Global intelligence Logical intelligence Verbal intelligence Visuospatial intelligence Technical intelligence

 Brother pairs
 η 268,496 257,591 257,352 257,351 255,635
 b 0.172 0.177 0.143 0.114 0.113

 95% CI 0.168-0.176 0.173-0.181 0.140-0.147 0.110-0.118 0.108-0.117

 R2 0.27 0.23 0.20 0.16 0.18

 DZ twin pairs
 η 1,715 1,676 1,676 1,676 1,672
 b 0.136 0.152 0.104 0.054 0.096

 95% CI 0.089-0.182 0.103-0.202 0.057-0.152 0.005-0.104 0.047-0.144

 R2 0.30 0.25 0.21 0.15 0.19

 MZ twin pairs
 η 1,432 1,391 1,394 1,394 1,377
 b 0.128 0.114 0.113 0.099 0.060

 95% CI 0.084-0.172 0.062-0.166 0.059-0.166 0.039-0.159 0.003-0.118

 R2 0.66 0.53 0.46 0.37 0.43

 Bivariate heritability
 r(DZ) 0.14 0.14 0.13 0.08 0.08
 r(MZ) 0.20 0.21 0.20 0.13 0.13
 Heritability 0.14 0.15 0.14 0.10 0.10
 Shared environment 0.07 0.06 0.06 0.03 0.03

 Non-shared 0.79 0.79 0.80 0.87 0.87

 environment

 The association between cardiovascular fitness and cognitive performance within brother and twin pairs, readjusted coefficient of determination;
 b= regression coefficient presented with 95% confidence intervals. Bivariate heritability: By comparing correlation coefficients (r) between dizygotic (DZ) and

 intelligence scores wee calculated. env=environment.

 20908 | www.pnas.org/cgi/doi/10.1073/pnas.0905307106 Ábergetal.
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 Fig. 3. Change in cardiovascular fitness between age 15 y and 18 y predicts
 intelligence scores. (A) Schematic presentation of the model. Note that the
 regression line is not perfectly straight in reality, but it has essentially this ap-
 pearance in the various analyses. (B) From all subjects with physical education
 grades at age 15 y and cardiovascular fitness scores at age 18 y, the 10% of
 subjects with the highest and lowest changes in fitness scores compared with
 predicted scores were selected (<10th percentile; 10% lowest vs. predicted
 scores; >90th percentile, 10% highest vs. predicted scores; 10th-90th percentile,
 remaining 80%). Mean global intelligence, logical, verbal, visuospatial, and
 technical scores were compared among the 3 percentile groups and significant
 differences were found among all groups (P < 0.0001). The SDs were 1 .81-1 .97.

 provements. From structural and functional MRI, as well as
 cognitive tests and neurophysiology, it appears that the same
 effects are present in corresponding brain regions in humans,
 and it is likely that the same neurobiological mechanisms are
 responsible (1). Specifically, increased physical exercise appears
 to decrease activation of the anterior cingulated cortex, whereas
 increased activation is observed in the middle frontal gyrus and
 superior parietal cortex (26). In addition, correlations existed for
 performance in a selective-attention task. Interestingly, in the
 hippocampus, increased cerebral blood volume has been ob-
 served in the dentate gyrus following a program of long-term
 physical exercise (27). This has also been observed in animals, in
 which hippocampal angiogenesis (28), neurogenesis (4), and
 synaptic plasticity (29) increase in response to cardiovascular
 exercise. Mechanistically, there are several potential biochemical

 mediators of exercise effects on the brain, e.g., IGF1, BDNF, and
 VEGF, which exhibit similar or complementary effects in the
 hippocampus (30). Circulating levels of these substances in-
 crease in response to exercise (31-33), and to various extents,
 they cross the blood-brain barrier (30).

 The cardiovascular fitness hypothesis suggests that cardiovas-
 cular (i.e., aerobic) fitness is the physiological mediator that
 explains the relationship between physical exercise and im-
 proved cognitive performance (34). Vigorous aerobic-based
 exercise intervention studies in children reported enhanced
 cognitive performance (35, 36), in contrast to studies targeted at
 moderate levels of physical activity (37, 38). In elderly people,
 meta-analyses (10, 12) did not fully support the cardiovascular
 fitness hypothesis, although it was confirmed that physical
 activity and cognitive performance are associated. The present
 data provide support for the cardiovascular fitness hypothesis in
 early adulthood, a period that was previously not studied.
 Furthermore, similar to a recent study of school children (39),
 the present study demonstrates that positive associations with
 intelligence scores were restricted to cardiovascular fitness and
 not muscular strength (see Fig. IB). These findings support the
 notion that cardiovascular exercise improved cognition through
 increased amounts of circulating factors that positively influence
 brain plasticity and cognitive function (30).

 Magnitude of Associations. The strength of this study was the
 ability to include information from all young men in Sweden
 born from 1950 through 1976 at the time of compulsory military
 conscription (N > 1,200,000). This conferred 2 disadvantages.
 Because only male subjects were analyzed, these results might
 not be applicable to women. Moreover, because the statistical
 power was so large, even very small associations (i.e., effect sizes)
 were statistically significant. Thus, it is important to put the
 magnitude of regression coefficients into perspective. A regres-
 sion coefficient b of 0.22 for global intelligence demonstrates
 that an increase of 1 stanine unit in cardiovascular fitness was

 associated with a change in global intelligence score of 0.22
 stanine units. Assuming a 70-kg young male subject, one stanine
 unit of cardiovascular fitness corresponded roughly to 20 W in
 maximal load on an ergonometer cycle (40). Thus, 5 points in
 Wechsler Adult Intelligence Scale correspond to 60 W ergonometer
 cycle load (assuming intercept in global intelligence score of 100).

 The present study assessed logical, verbal, spatial, and tech-
 nical aspects of intelligence; however, information regarding
 more specific neuropsychological functions, in particular exec-
 utive control functions, was lacking. Executive function involves
 scheduling, response inhibition, planning, and working memory.
 Our data were collected between 1968 and 1994, during which
 more complex neurocognitive measurements were still under
 development. Moreover, in a population-based study with more
 than 1.2 million subjects, such detailed psychological analyses are
 technically very difficult to implement. Nevertheless, others have
 shown that executive functions display strong association to
 physical exercise. A review by Hall and colleagues (41), as well
 as a meta-analysis by Colcombe and Kramer (11), indicate that
 the exercise effect was particularly strong for executive function
 tests. Among children, the effect of physical activity on cognition
 is task-dependent (42), and there is also evidence for a selective
 facilitation effect of aerobic fitness on executive function (35).
 Although we lacked specific tests of executive control function,
 we found that cardiovascular fitness was more strongly associ-
 ated with 2 domains: logical and verbal performance. As men-
 tioned earlier, exercise induced specific functional improve-
 ments, in particular in the hippocampus and frontal lobe.
 Interestingly, both logical reasoning (which includes executive
 components) and verbal intelligence are domains considered to
 be linked to these brain areas (43, 44).

 Ö
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 Table 3. Hazard ratios for relationships of cardiovascular fitness at age 18 y with education
 and occupational outcomes in Swedish men enlisted for military service in 1968-1994

 Event Cardiovascular fitness No. of events Adjusted HR (95% CI)

 Education/ Per stanine score 230,567 1.09 (1.09-1.10)
 university outcome Scores 6-9 vs. 1-4 103,444 1.78(1.75-1.81)

 Occupation/ Per stanine score 56,697 1.13(1.12-1.13)
 SEI 3 outcome Scores 6-9 vs. 1-4 48,459 1 .51 (1 .47-1 .55)

 The relationships between cardiovascular fitness at age 1 8 and subsequent time dependent events; obtaining
 a university degree (compared to pre-high school or high school) or achieving an occupation with a high
 socioeconomic index; SEI 3 (compared to an occupation with a low socioeconomic index; SEI 1). SE1 1, unskilled/
 semi-skilled worker in manufacturing sector; skilled worker in manufacturing sector; unskilled/semi-skilled
 worker in service sector; or skilled worker in service sector. SEI 2, lower-level non-manual employees (education
 <2 y high school), lower-level non-manual employees (education 2 y high school), intermediate-level non-manual
 employees, farmers, and other self-employed. SEI 3, self-employed with academic education, manager, higher
 civil servants, and senior salaried employees.

 Predictors of Change. Results demonstrated that male subjects
 with improved predicted cardiovascular fitness between 15 and
 18 y of age exhibited significantly greater intelligence scores than
 subjects with decreased cardiovascular fitness. This indicates that
 changes in cardiovascular fitness are linked to changes in cog-
 nitive performance during adolescence. Nevertheless, direct
 causality cannot be established. The reverse, i.e., better cardio-
 vascular fitness is a consequence of greater intelligence, is also
 possible. However, the fact that we demonstrated associations
 between cognition and cardiovascular fitness but not muscle
 strength, the differential link to some domains over others, and
 the longitudinal prediction by cardiovascular fitness at age 18 y
 on subsequent academic achievement speak in favor of a car-
 diovascular effect on brain function. It is important to note that
 differences between short-term (i.e., weeks to months) and
 long-term (i.e., years) effects of increased physical exercise on
 aerobic capacity might exist. However, to our knowledge, no
 studies have assessed these relationships.

 Genetic Influences on Associations. The importance of genetic
 effects on intelligence (45-47), as well as on physical activity (48,
 49), is well established. The present study determined high
 heritability for cardiovascular fitness. However, according to
 brother pair comparisons and modeling cross-twin cross-trait
 correlations, the associations were predominantly explained by
 the non-shared environment. Thus, factors other than heredity
 and upbringing are important for the association.
 In summary, in a large population-based analysis, cardiovas-

 cular fitness was positively associated with cognitive perfor-
 mance at age 18 y. Longitudinal analyses of age showed that
 improved physical fitness between 15 and 18 y was associated
 with better cognitive performance and that physical fitness at age
 18 y predicted occupational status and educational achievement
 later in life. More studies addressing causality are needed.
 However, we believe the present results provide scientific sup-
 port for educational policies to maintain or increase physical
 education in school curricula as a means to stem the growing
 trend toward a sedentary lifestyle, which is accompanied by an
 increased risk for diseases and perhaps intellectual and academic
 underachievement.

 Methods

 For a full description of all materials and methods, see SI Methods.

 Participants. A cohort of 1 8-y-old Swedish male subjects who were enlisted for
 military service between 1968 and 1994 (Λ/ = 1,221,727) and represented
 approximately 97% of the male Swedish population born between 1950 and
 1976, was compiled from the Swedish Military Service Conscription Register.

 Physical and Cognitive Tests. Cardiovascular fitness was assessed by using a
 cycle ergonometry test. Isometric muscle strength was measured by knee

 extension, elbow flexion, and hand grip. Four cognitive tests were used
 covering the following areas: logical performance test, verbal test of syn-
 onyms and opposites, test of visuospatial/geometric perception, and techni-
 cal/mechanical skills including mathematical/physics problems (50). Perfor-
 mance on all 4 tests were combined to obtain a global intelligence score,
 which was regarded as a measure of general cognitive ability (50). To provide
 long-term stability of the data sets across test centers, all physical and cogni-
 tive test results were standardized as stanine scores from 1 (low) to 9 (high)
 against data from previous years.

 Links to the Swedish Multi-Generation Register and Twin Register enabled
 the identification of full brothers and twins. Education and occupation infor-
 mation was obtained from the longitudinal LISA database. The Ethics Com-
 mittee of Sahlgrenska Academy at the University of Gothenburg and the
 Secrecy Clearance at Statistics Sweden approved the study.

 Statistical Analysis. All statistical calculations were performed with SAS soft-
 ware (version 8.1; SAS Institute). Because of the large number of observations,
 the majority of Ρ values and SEMs were very small. Therefore, Ρ values <0.0001
 and SEMs in tables and figures were not reported unless otherwise stated. As
 a measure of variation, SDs are included in the legends.

 Cross-Sectional Analysis. Linear regression models. Linear regression was ana-
 lyzed with PROC GLM using intelligence scores as dependent variables and
 cardiovascular fitness and muscle strength scores as independent variables. To
 determine if intelligence score means were significantly separated from each
 other, the Student-Newman-Keuls post-hoc test was used. Effect sizes are
 presented as regression coefficients (b) with 95% CIs in all models.
 Adjusted models. The associations between cardiovascular fitness and intelli-
 gence scores was tested in multiple regression models adjusted for multiple
 confounders. Because differences over time as well as among the 6 test centers
 could introduce bias, conscription year and conscription test center were
 considered as possible confounders. In addition, parental educational level
 was included as a confounder. The proportion of the variation explained by
 the adjusted model is given by the adjusted coefficient of determination (R2).
 Because our statistical software did not present Ρ values below 0.0001, which
 was achieved for virtually every analysis as a result of the large numbers, here
 we present the F-values indicating the strength of the analysis.

 We also performed the adjusted models using the identical number of obser-
 vations, and the identical set of explanatory variables. In this analysis, the coef-
 ficients of regression and degrees of determinations are fully comparable among
 the models. Therefore, the coefficients of determination indicate which response
 has the highest degree of variation explained by the factors included in the
 models, whereas the coefficients of regression or subgroup means show the
 magnitude of importance for each intelligence score.
 Brother and twin analysis. Associations were evaluated within brother pairs to
 assess familial factors, adjusting for conscription year and test center, as well
 as brothers' cardiovascular and cognitive performance. One brother was
 randomly selected to provide dependent variable values and the other broth-
 er's scores formed the independent variables. In the case of several brothers,
 the median served as the proxy for familial or heritable effects. The same
 analyses were repeated within DZ and MZ twin pairs, although without
 adjustment for conscription year, resulting in a co-twin control analysis (51).

 Pearson correlation coefficients (r) within brother pairs, as well as DZ and
 MZ twin pairs, were used to assess univariate heritability. Similarly, a cross-
 twin cross-trait analysis (52) was performed to yield bivariate heritabilities. By
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 comparing the cross-correlation coefficients between DZ and MZ twin pairs,
 the influence of genetic, shared environmental, and non-shared environmen-
 tal factors on the associations was calculated (53).

 Longitudinal Analysis. Prediction of cognitive performance from changes in cardio-

 vascular fitness. Regression modeling was performed with physical education
 grades at age 1 5 y as the independent variable and the cardiovascular fitness
 score at age 1 8 y as the dependent variable. The rationale is shown in Fig. 3A
 Individuals deviating from the regression line were identified as residuals (i.e.,
 outliers) in this model, and 3 groups were defined according to cardiovascular
 fitness at age 1 8 y: the "increased" group comprising the 90th percentile (i.e.,
 10% highest cardiovascular fitness vs. predicted), the "decreased" group
 comprising the 10th percentile (i.e., 10% lowest fitness vs. predicted) and the
 "unchanged" group representing the 10th to 90th percentile (i.e., remaining
 80%). Cognitive performance at age 18 y was compared among the 3 groups,
 adjusting for conscription year. The analysis was based on the 232,612 indi-
 viduals with complete recordsof final year grades, cardiovascularfitnessscore,
 intelligence scores, and conscription year.

 Prediction of education and occupation. The relationships between cardiovascu-
 lar fitness at age 1 8 y and subsequent academic and educational achievements
 were determined using Cox proportional-hazards regression models. Further
 details are described in SI Methods.
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